The main task of industrial robot control technology is to control the position, attitude and trajectory of industrial robots in the workspace, the sequence of operations and the time of action. It has the characteristics of simple programming, software menu operation, friendly human-computer interaction interface, online operation prompts and easy to use.
Key technologies include:
(1) Open modular control system architecture : adopts distributed CPU computer structure, which is divided into robot controller (RC), motion controller (MC), photoelectric isolation I/O control board, sensor processing board and programming Teaching box and so on. The robot controller (RC) and the programming teach pendant communicate via the serial/CAN bus. The main computer of the robot controller (RC) completes the motion planning, interpolation and position servo of the robot, as well as the functions of the main control logic, digital I/O, sensor processing, etc., and the programming teaching box completes the display of information and the input of the keys.
(2) Modular and hierarchical controller software system: The software system is built on the open source-based real-time multitasking operating system Linux, which adopts layered and modular structure design to realize the openness of the software system. The entire controller software system is divided into three levels: hardware driver layer, core layer and application layer. The three levels face different functional requirements, corresponding to different levels of development. Each level in the system consists of several modules with opposite functions. These functional modules cooperate with each other to realize the functions provided by the level.
(3) Fault diagnosis and safety maintenance technology of the robot: Diagnosing the robot fault through various information and performing corresponding maintenance is the key technology to ensure the safety of the robot.
(4) Networked robot controller technology : The application engineering of current robots has evolved from a single robot workstation to a robot production line, and the networking technology of robot controllers has become more and more important. The controller has networking functions of serial port, field bus and Ethernet. It can be used for communication between robot controllers and robot controllers with the host computer, which is convenient for monitoring, diagnosis and management of the robot production line.
Antenk DVI Series Digital Video Interface connectors are the standard digital interface for flat panels, video graphics cards, monitors and HDTV units. This series includes DVI-D (Digital), DVI-A (Analog) and DVI-I (Integrated Digital/Audio). Their unique crossing ground blades provide high speed performance at low cost. They are available in Straight or Right Angle PCB mount receptacles and mating male cable connectors. They support a data transfer rate of 4.95Gbps with a dielectric withstanding voltage of 500VAC. Each version features our specially designed contacts which improve signal performance and a zinc alloy shield that reduces electromagnetic interference (EMI).
Digital Visual Interface Cable Connectors
DVI ConnectorWith the advent of technologies such as DVD players, high-definition televisions, and even digital cable, the need for more advanced cables and connectors has increased. Digital Visual Interface (DVI) is one response to the growing need for interconnected systems, enabling digital systems to be connected to an array of displays. Yet DVI cables and connectors can also be complicated, and may lead to confusion between High Definition Multimedia Interface (HDMI) and DVI. Although the two systems have much in common, they service different niches of digital technology.
Digital Visual Interface
Older systems aren`t necessarily outdated systems. Although DVI preceded HDMI, it`s still widely used in both business and domestic settings. DVI connectors are designed to handle digital data transmission, incorporating three transmission channels in every connector link. The maximum bandwidth for data transfer is 165 megahertz, which is enough to relay up to 165 million pixels per second. Data is encoded for effective transfer, but a single link can handle around 4.95 gigabits per second of information. Double links can handle twice that amount.
Because a DVI cable carries information over a 165 megahertz bandwidth, complete digital resolution can be obtained. Using double link connectors increases the speed of transmission, but requires another cable. However, not many devices depend solely on a double link DVI, so this technolgy can be used on an as-desired basis.
Types of DVI Connectors
There are three general categories of DVI cable connectors: DVI-Digital (DVI-D), DVI-Integrated (DVI-I), and DVI-Analog (DVI-A). However, most connectors fall into one of the first two groups.
A standard DVI Connector is 37 mm wide and has 24 pins, 12 of which are used for a single link connection. When analog is involved, four additional pins are needed to support the additional lines of an analog signal. It is not possible to cross from a digital source to an analog display or vice versa. In those instances, an integrated connector is probably the best option. There are five common types of DVI connectors.
DVI-I Single Link
This kind of connector has three rows, each with six pins. There are two contacts. Because the connector is integrated, it can be used with both analog and digital applications.
DVI-I Dual Link
A DVI-I dual link connector can also be used with both digital and analog applications, but is configured with more pins to accommodate a dual connection. There are three rows with eight pins each, as well as two contacts.
DVI-D Single Link
Specifically designed for digital applications, a DVI-D single link connector has three rows of six pins, and looks much like a DVI-I single link connector. However, a DVI-D connector has no contacts.
DVI-D Dual Link
Also made specifically for digital applications, a DVI-D dual link features more pins (three rows of eight) for dual connections. Like a DVI-D single link, a DVI-D dual link connector has no contacts.
DVI-A
This particular type of connector can only be used for analog applications, and has three rows of pins. One row has five pins, one has four pins, and the last row has three pins. Like single link connectors, a DVI-A link connector has two contacts.
Male DVI Connector
ShenZhen Antenk Electronics Co,Ltd , https://www.antenkelec.com